real biathlon
    • Athletes
    • Teams
    • Races
    • Seasons
    • Scores
    • Records
    • Blog(current)
    • More
      Patreon Content Course Profiles Explanations Shortcuts
      Error Report
      Privacy Policy About
    •     
  • Forum
  • Patreon
  • Twitter
  • YouTube
    Instagram
    Facebook

Recent Articles

  • Most improved athletes this winter
  • New biathlon point system
  • Historic biathlon results create expectations. But what about points?
  • What do you expect? Practical applications of the W.E.I.S.E.
  • Introducing W. E. I. S. E: the Win Expectancy Index based on Statistical Exploration, version 1

Categories

  • Biathlon Media
  • Biathlon News
  • Long-term trends
  • Statistical analysis
  • Website updates

Archives

  • 2022
    • December
    • June
    • May
    • March
    • February
    • January
  • 2021
    • December
    • November
    • September
    • July
    • June
    • May
    • April
    • March
    • February
    • January
  • 2020
    • December
    • November
    • August
    • June
    • March
  • 2015
    • December
  • 2013
    • August
    • July
  • 2012
    • July

Search Articles

Recent Tweets

Tweets by realbiathlon

Tag: shooting

Most improved athletes this winter

Posted on 2022-12-24 | by real biathlon | Leave a Comment on Most improved athletes this winter

Season-to-season improvements in Total Performance Scores of regular World Cup athletes. The last row of both tables shows improvement and decline in overall scores for this season’s World Cup trimester 1 compared to performances in trimester 1 last season (only athletes with at least 5 races this winter). You can do your own season-to-season comparisons for all stats in the Patreon bonus area.


Note: The scores are standard scores (or z-scores), indicating how many standard deviations (SD) an athlete is back from the World Cup mean (negative values indicate performances better than the mean). The Total Performance Score is calculated by approximating the importance of skiing, hit rate and shooting pace using the method of least squares (for more details, see here and here), and then weighting each z-score value accordingly.


Men

2022–23 z-Scores compared to 2021–22 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1HartwegNiklasSUI
6-0.97-1.41-1.47-1.16-0.99
2AndersenFilip FjeldNOR
8-1.17-0.85-0.44-0.99-0.63
3ClaudeFlorentBEL
8-0.64-1.420.25-0.76-0.56
4GuzikGrzegorzPOL
50.07-0.070.590.09-0.50
5GiacomelTommasoITA
8-1.210.20-1.92-0.88-0.48
6LaegreidSturla HolmNOR
8-1.59-1.42-1.85-1.57-0.42
7BoeJohannes ThingnesNOR
8-1.98-0.94-1.37-1.60-0.42
8PonsiluomaMartinSWE
8-1.490.40-0.91-0.87-0.36
9DohertySeanUSA
8-0.360.20-0.89-0.26-0.36
10ReesRomanGER
8-1.06-1.04-0.40-0.98-0.35
11StvrteckyJakubCZE
6-1.110.520.34-0.46-0.33
12IlievVladimirBUL
5-0.890.640.25-0.31-0.30
13StroliaVytautasLTU
8-1.01-0.91-0.42-0.91-0.28
14SimaMichalSVK
60.44-0.860.730.10-0.26
15LapshinTimofeiKOR
5-0.29-0.36-1.91-0.50-0.25
16KomatzDavidAUT
70.00-1.360.80-0.30-0.25
17MagazeevPavelMDA
60.09-0.821.950.05-0.25
18KarlikMikulasCZE
5-0.611.040.940.05-0.23
19HiidensaloOlliFIN
8-0.54-0.56-0.52-0.54-0.22
20TachizakiMikitoJPN
60.71-1.27-0.010.05-0.20
21DollBenediktGER
8-1.41-0.27-0.71-1.00-0.17
22ClaudeFabienFRA
8-1.48-0.75-0.76-1.18-0.16
23NelinJesperSWE
8-1.24-0.750.57-0.88-0.14
24KrcmarMichalCZE
8-0.98-0.75-0.12-0.81-0.08
25BrandtOskarSWE
5-0.901.350.65-0.06-0.07
26WrightCampbellNZL
50.160.29-0.240.15-0.06
27PerrotEricFRA
5-0.810.64-0.13-0.31+0.00
28ZahknaReneEST
70.52-0.80-0.130.06+0.07
29DudchenkoAntonUKR
7-0.62-0.68-1.15-0.70+0.08
30GuigonnatAntoninFRA
8-1.09-0.37-0.34-0.79+0.12
31Fillon MailletQuentinFRA
8-1.07-1.23-1.21-1.13+0.14
32LeitnerFelixAUT
8-0.31-1.04-0.71-0.57+0.16
33RunnallsAdamCAN
60.100.11-1.77-0.12+0.17
34LangerThierryBEL
6-0.350.80-0.29-0.01+0.20
35BoeTarjeiNOR
8-1.30-0.37-0.54-0.94+0.21
36SamuelssonSebastianSWE
8-1.23-0.75-0.38-0.99+0.21
37FemlingPeppeSWE
7-0.500.22-1.39-0.40+0.21
38ChristiansenVetle SjaastadNOR
8-1.52-0.47-0.20-1.06+0.23
39SeppalaTeroFIN
7-1.030.22-0.75-0.63+0.23
40JacquelinEmilienFRA
8-1.610.11-0.89-1.02+0.24
41NawrathPhilippGER
5-0.62-0.200.21-0.40+0.31
42KuehnJohannesGER
7-1.260.67-0.47-0.60+0.32
43EderSimonAUT
5-0.41-0.67-0.52-0.50+0.32

Women

2022–23 z-Scores compared to 2021–22 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1KlemencicPolonaSLO
7-0.91-0.290.20-0.59-0.68
2VittozziLisaITA
8-1.29-0.92-1.28-1.18-0.47
3KinnunenNastassiaFIN
5-0.48-0.040.56-0.23-0.46
4GasparinAitaSUI
8-0.53-0.75-0.88-0.64-0.45
5ComolaSamuelaITA
7-0.23-1.01-0.04-0.43-0.44
6SimonJuliaFRA
8-1.38-1.10-1.79-1.34-0.42
7MinkkinenSuviFIN
7-0.26-1.22-0.96-0.62-0.39
8EderMariFIN
8-1.350.46-0.09-0.67-0.37
9Batovska FialkovaPaulinaSVK
8-0.71-0.23-0.42-0.53-0.36
10TandrevoldIngrid LandmarkNOR
8-1.33-1.01-0.48-1.13-0.31
11KnottenKaroline OffigstadNOR
8-0.35-1.01-1.12-0.63-0.26
12ChevalierChloeFRA
8-0.99-0.49-0.13-0.74-0.26
13VoigtVanessaGER
8-0.92-1.360.36-0.90-0.25
14LunderEmmaCAN
6-0.54-0.76-1.49-0.72-0.25
15ZdoucDunjaAUT
70.15-1.01-0.79-0.30-0.23
16ReidJoanneUSA
6-0.17-0.130.14-0.12-0.22
17SchwaigerJuliaAUT
7-0.370.010.06-0.20-0.21
18PerssonLinnSWE
8-0.98-1.01-1.30-1.03-0.20
19MakaAnnaPOL
5-0.15-0.370.51-0.13-0.15
20TachizakiFuyukoJPN
7-0.28-1.010.79-0.36-0.13
21MagnussonAnnaSWE
8-0.71-0.84-0.82-0.76-0.12
22IrwinDeedraUSA
6-0.19-0.130.13-0.13-0.10
23WiererDorotheaITA
8-0.98-0.75-1.78-1.01-0.10
24ZukKamilaPOL
6-0.310.370.37-0.03-0.09
25TomingasTuuliEST
6-0.850.620.60-0.25-0.06
26LienIdaNOR
7-1.160.120.51-0.59-0.05
27Herrmann-WickDeniseGER
8-1.37-0.49-0.58-1.02-0.03
28KalkenbergEmilie AagheimNOR
7-0.25-0.60-0.79-0.42-0.03
29DavidovaMarketaCZE
8-1.02-0.92-1.20-1.01-0.00
30BendikaBaibaLAT
7-0.830.73-0.66-0.36+0.02
31Chevalier-BouchetAnaisFRA
8-1.22-0.49-1.13-1.00+0.04
32Haecki-GrossLenaSUI
8-0.940.46-1.09-0.55+0.04
33OebergElviraSWE
8-1.72-0.84-0.86-1.36+0.06
34HauserLisa TheresaAUT
8-0.93-0.84-1.44-0.97+0.16
35LieLotteBEL
7-0.38-1.22-0.13-0.59+0.17
36TodorovaMilenaBUL
7-0.540.32-0.32-0.26+0.19
37OebergHannaSWE
8-1.31-0.14-1.51-1.00+0.24
38PreussFranziskaGER
5-0.81-0.31-1.13-0.70+0.33
39StremousAlinaMDA
7-0.16-0.091.230.03+0.33
40JislovaJessicaCZE
7-0.15-0.70-0.49-0.35+0.40
41CharvatovaLucieCZE
6-0.401.25-0.880.02+0.42
42BlashkoDariaUKR
60.48-0.51-0.450.08+0.42
43FialkovaIvonaSVK
5-0.731.73-0.180.05+0.45
44BilosiukOlenaUKR
50.68-0.69-0.030.20+0.53
45NilssonStinaSWE
7-0.690.630.47-0.17+0.54

Posted in Statistical analysis | Tagged results, shooting, skiing

Most accurate shooters in biathlon (1995 – 2021)

Posted on 2022-01-08 | by real biathlon | Leave a Comment on Most accurate shooters in biathlon (1995 – 2021)

Men’s and women’s top shooters (by non-team shooting percentage) for the last two decades. The videos show a 16-race moving average.

Men

Women

Posted in Biathlon Media, Long-term trends | Tagged shooting

Improvement season-to-season

Posted on 2021-11-28 | by real biathlon | Leave a Comment on Improvement season-to-season

Changes in the Total Performance Scores of regular World Cup athletes. The tables show improvement and decline in z-scores from this weekend’s Season Opening in Östersund compared to trimester 1 of last season (roughly December 2020, only athletes with at least 3 races in last winter’s trimester 1). You can do your own season-to-season comparisons for all stats in the Patreon bonus area.


Note: The scores are standard scores (or z-scores), indicating how many standard deviations (SD) an athlete is back from the World Cup mean (negative values indicate performances better than the mean). The Total Performance Score is calculated by approximating the importance of skiing, hit rate and shooting pace using the method of least squares (for more details, see here and here), and then weighting each z-score value accordingly.


Men

2021–22 z-Scores compared to Trimester 1 of 2020–21 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1TodevBlagoyBUL
20.84-0.53-0.940.23-1.06
2GowScottCAN
2-0.25-1.56-1.74-0.81-1.00
3DudchenkoAntonUKR
2-0.76-0.53-1.04-0.73-0.72
4BrownJakeUSA
2-1.05-0.531.02-0.65-0.54
5SchommerPaulUSA
2-0.11-1.21-0.15-0.44-0.50
6DesthieuxSimonFRA
2-1.53-1.21-0.72-1.34-0.49
7StvrteckyJakubCZE
2-0.78-0.180.95-0.40-0.44
8KobonokiTsukasaJPN
20.24-1.210.33-0.17-0.41
9DovzanMihaSLO
20.17-1.21-1.40-0.42-0.40
10ZahknaReneEST
20.45-0.870.430.07-0.37
11StroliaVytautasLTU
2-0.90-0.531.30-0.53-0.36
12TsymbalBogdanUKR
20.11-0.53-1.50-0.27-0.31
13StefanssonMalteSWE
2-0.211.190.860.32-0.29
14ClaudeFabienFRA
2-1.73-0.18-1.50-1.26-0.28
15GowChristianCAN
2-0.47-1.21-1.33-0.79-0.27
16LeitnerFelixAUT
2-1.08-0.18-0.55-0.76-0.27
17PidruchnyiDmytroUKR
2-0.54-0.87-0.82-0.67-0.24
18StalderSebastianSUI
2-0.04-0.18-0.97-0.19-0.22
19MagazeevPavelMDA
20.24-0.53-1.34-0.17-0.21
20LatypovEduardRUS
2-1.00-1.21-0.01-0.95-0.15
21SiimerKristoEST
21.030.500.310.79-0.10
22DombrovskiKarolLTU
2-0.35-0.180.21-0.23-0.09
23ClaudeFlorentBEL
2-0.22-0.530.28-0.25-0.08
24NelinJesperSWE
2-1.32-0.180.52-0.77-0.04
25FemlingPeppeSWE
2-0.470.16-1.29-0.38-0.02
26SmolskiAntonBLR
2-1.28-0.180.23-0.78-0.02
27LazouskiDzmitryBLR
2-0.20-0.181.04-0.05+0.01
28HornPhilippGER
2-0.860.16-0.90-0.57+0.05
29ChristiansenVetle SjaastadNOR
2-1.50-0.870.64-1.06+0.10
30BoeTarjeiNOR
2-1.38-0.87-0.59-1.14+0.10
31BormoliniThomasITA
2-0.31-0.53-0.93-0.45+0.10
32BauerKlemenSLO
2-0.040.50-1.09-0.01+0.11
33SzczurekLukaszPOL
21.131.190.551.08+0.11
34GuigonnatAntoninFRA
2-1.210.16-0.39-0.71+0.11
35HiidensaloOlliFIN
2-0.210.160.800.02+0.12
36BanysLinasLTU
20.950.50-0.410.66+0.12
37EderSimonAUT
2-0.41-1.21-1.55-0.78+0.15
38SlotinsRobertsLAT
20.420.851.490.67+0.15
39SamuelssonSebastianSWE
2-2.000.160.44-1.08+0.15
40ReesRomanGER
2-0.900.16-0.15-0.50+0.18
41MukhinAlexandrKAZ
20.280.850.450.46+0.18
42VarabeiMaksimBLR
2-0.951.191.39-0.05+0.20
43BoeJohannes ThingnesNOR
2-1.61-1.210.02-1.30+0.20
44IlievVladimirBUL
2-0.460.500.38-0.08+0.22
45JacquelinEmilienFRA
2-1.990.50-0.63-1.10+0.23
46OzakiKosukeJPN
2-0.180.851.970.38+0.26
47BalogaMatejSVK
21.350.50-0.140.92+0.27
48TrsanRokSLO
21.20-1.56-0.680.18+0.27
49WindischDominikITA
2-0.421.19-1.09-0.03+0.28
50LoginovAlexanderRUS
2-1.210.16-0.48-0.73+0.29
51LangerThierryBEL
2-0.100.50-0.080.08+0.30
52RasticDamirSRB
20.660.503.220.92+0.33
53BocharnikovSergeyBLR
2-0.820.85-0.79-0.33+0.34
54LaegreidSturla HolmNOR
2-0.71-1.56-0.91-0.98+0.34
55Fillon MailletQuentinFRA
2-1.36-0.18-0.71-0.94+0.39
56DollBenediktGER
2-0.98-0.18-0.28-0.67+0.39
57KrcmarMichalCZE
2-0.740.160.08-0.38+0.40
58FakJakovSLO
2-0.37-1.21-0.85-0.67+0.42
59HarjulaTuomasFIN
20.620.16-1.650.21+0.43
60YaliotnauRamanBLR
2-0.511.531.180.28+0.43
61WegerBenjaminSUI
2-0.37-0.870.17-0.45+0.43
62KomatzDavidAUT
20.16-0.530.540.01+0.45
63GuzikGrzegorzPOL
20.141.190.710.51+0.46
64BionazDidierITA
20.11-0.180.610.09+0.47
65DohertySeanUSA
20.020.85-0.240.23+0.48
66SimaMichalSVK
20.550.850.080.58+0.54
67DaleJohannesNOR
2-1.240.160.88-0.58+0.64
68TachizakiMikitoJPN
21.03-0.870.680.44+0.65
69EberhardJulianAUT
20.060.16-0.270.05+0.72
70SinapovAntonBUL
20.421.530.760.78+0.72
71EliseevMatveyRUS
20.71-1.21-0.260.04+0.85
72VaclavikAdamCZE
20.031.881.190.70+0.88
73PonsiluomaMartinSWE
2-1.532.56-1.12-0.29+0.91
74GerdzhikovDimitarBUL
20.452.560.151.03+0.99
75HoferLukasITA
20.14-0.530.930.04+1.00
76GaranichevEvgeniyRUS
20.590.85-0.800.50+1.21

Women

2021–22 z-Scores compared to Trimester 1 of 2020–21 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1BendikaBaibaLAT
2-0.74-0.87-0.34-0.73-0.83
2LieLotteBEL
2-0.31-1.28-0.67-0.63-0.61
3SolaHannaBLR
2-1.29-0.05-1.47-0.95-0.55
4NigmatullinaUlianaRUS
2-0.60-1.68-0.33-0.88-0.43
5MagnussonAnnaSWE
2-0.72-0.46-0.13-0.57-0.37
6DavidovaMarketaCZE
2-1.24-1.68-0.15-1.24-0.37
7KliminaDaryaKAZ
20.16-0.052.040.33-0.35
8JislovaJessicaCZE
2-0.37-0.46-0.51-0.41-0.30
9FialkovaIvonaSVK
2-0.481.180.350.10-0.25
10AlimbekavaDzinaraBLR
2-1.46-1.28-0.44-1.29-0.23
11WeidelAnnaGER
2-0.09-2.09-0.74-0.75-0.23
12AvvakumovaEkaterinaKOR
20.27-0.46-0.060.02-0.22
13LescinskaiteGabrieleLTU
20.88-1.680.760.12-0.21
14CharvatovaLucieCZE
2-0.880.77-1.04-0.42-0.19
15BrorssonMonaSWE
2-1.09-0.46-0.84-0.88-0.18
16BescondAnaisFRA
2-1.32-0.05-0.29-0.83-0.17
17PuskarcikovaEvaCZE
2-0.44-0.46-0.11-0.40-0.16
18VittozziLisaITA
2-0.920.36-1.99-0.68-0.15
19EderMariFIN
2-1.05-0.051.45-0.46-0.14
20HauserLisa TheresaAUT
2-0.95-0.87-1.97-1.05-0.14
21KondratyevaAnastassiyaKAZ
21.80-0.873.001.17-0.13
22Chevalier-BouchetAnaisFRA
2-1.21-0.05-1.16-0.87-0.10
23LienIdaNOR
2-0.92-0.051.01-0.43-0.07
24IrwinDeedraUSA
20.300.360.190.31-0.05
25Braisaz-BouchetJustineFRA
2-1.650.36-0.40-0.91-0.05
26TodorovaMilenaBUL
2-0.650.77-0.26-0.19-0.03
27KalkenbergEmilie AagheimNOR
2-0.25-0.05-0.71-0.25-0.01
28OebergElviraSWE
2-2.150.77-0.91-1.15+0.00
29DzhimaYuliiaUKR
2-0.74-0.05-0.23-0.48+0.03
30RoeiselandMarte OlsbuNOR
2-1.63-0.46-1.32-1.25+0.05
31HerrmannDeniseGER
2-1.23-0.870.41-0.93+0.06
32PreussFranziskaGER
2-1.51-0.05-0.83-1.00+0.06
33KruchinkinaElenaBLR
2-0.35-0.05-0.35-0.26+0.07
34MironovaSvetlanaRUS
2-0.820.36-0.44-0.43+0.11
35KlemencicPolonaSLO
20.021.180.130.37+0.11
36TachizakiFuyukoJPN
20.06-0.870.93-0.11+0.12
37ChevalierChloeFRA
2-1.021.18-0.30-0.29+0.12
38LunderEmmaCAN
2-0.04-1.28-2.13-0.65+0.16
39EganClareUSA
2-0.51-0.460.51-0.37+0.17
40TomingasTuuliEST
2-0.31-0.46-0.01-0.32+0.18
41KuklinaLarisaRUS
2-0.58-0.05-0.61-0.43+0.19
42GasparinSelinaSUI
2-0.20-0.05-0.59-0.20+0.20
43PerssonLinnSWE
2-1.210.77-0.99-0.61+0.21
44HinzVanessaGER
2-0.31-0.46-0.13-0.33+0.21
45KocerginaNataljaLTU
20.410.361.160.49+0.24
46HettichJaninaGER
2-0.51-0.05-0.61-0.39+0.25
47LehtlaKadriEST
21.76-1.28-0.410.62+0.32
48TandrevoldIngrid LandmarkNOR
2-1.19-0.050.46-0.66+0.33
49EckhoffTirilNOR
2-1.631.18-0.82-0.71+0.34
50OebergHannaSWE
2-1.670.77-1.40-0.93+0.34
51Hojnisz-StaregaMonikaPOL
2-0.330.36-0.20-0.11+0.35
52KadevaDanielaBUL
20.610.77-0.060.58+0.38
53JankaErikaFIN
21.500.36-0.190.97+0.38
54BeaudrySarahCAN
21.26-1.28-0.900.27+0.41
55HaeckiLenaSUI
2-0.230.36-1.25-0.18+0.41
56KnottenKaroline OffigstadNOR
20.23-1.68-1.25-0.50+0.42
57MaedaSariJPN
2-1.013.23-0.570.27+0.42
58ZdoucDunjaAUT
20.51-1.28-0.40-0.11+0.42
59GasparinElisaSUI
2-0.120.36-0.120.02+0.49
60GasparinAitaSUI
20.040.36-0.800.03+0.49
61SchwaigerJuliaAUT
20.07-0.460.32-0.05+0.49
62ZukKamilaPOL
2-0.331.590.750.36+0.58
63SimonJuliaFRA
2-1.121.59-1.38-0.36+0.58
64WiererDorotheaITA
2-1.16-0.051.65-0.50+0.59
65MinkkinenSuviFIN
20.51-0.050.550.36+0.60
66HorvatovaHenrietaSVK
22.24-0.46-0.111.18+0.61
67RiederChristinaAUT
20.61-0.460.310.27+0.61
68SemerenkoValentinaUKR
20.14-0.05-0.86-0.03+0.62
69BekhEkaterinaUKR
20.391.59-0.950.58+0.66
70LeshchankaIrynaBLR
2-0.110.360.560.11+0.79
71ReidJoanneUSA
2-0.151.591.370.53+0.81
72TalihaermJohannaEST
20.881.181.121.00+0.83
73HachisukaAsukaJPN
21.711.591.891.70+1.08
74SabuleAnnijaLAT
22.910.77-0.011.94+1.20
75KazakevichIrinaRUS
2-0.693.640.530.71+1.31
Posted in Long-term trends, Statistical analysis | Tagged 2021–22 season, shooting, skiing

Shooting Efficiency: 2019–20 vs. 2020–21

Posted on 2021-03-30 | by real biathlon | Leave a Comment on Shooting Efficiency: 2019–20 vs. 2020–21

After examining changes in skiing speed, let’s also look at a comparison of overall shooting quality between the 2019–20 and the 2020–21 seasons for all regular Biathlon World Cup athletes. To do that, I came up with the concept of Shooting Efficiency, an attempt to combine shooting accuracy and shooting time into one metric. For more details how it’s calculated, see here.

If you can’t find a specific athlete, you can look up the complete World Cup field (also available per trimester) for latest season (as well as all previous seasons) here:

  • 2020–21 Shooting Efficiency: Men | Women

Note: Only athletes with at least 4 non-team races last season and 16 non-team races this winter are included in the tables below. Shooting Efficiency is an overall shooting score, combining shooting accuracy and shooting time. It is the theoretical average time an athlete loses through shooting (based on hit rate, range time and potential penalty loops). For more details, see here.


Men

Lukas Hofer improved his non-team hit rate by 7.1% and managed his quickest shooting times (avg. 29.1s) since the 2009–10 season – which makes him the most improved among regular starters in the men’s field. The overall most efficient shooter, Simon Eder, also improved significantly over last season: he set his career best hit rate (93.3%) and his average theoretical time loss of 1:48.9 is the fastest ever for this Shooting Efficiency score.

If you have been wondering why Johannes Thingnes Bø had to fight so hard to defend his title (despite being close to his best ever ski speed), this stat gives the answer: in a sprint he loses the time equivalent of almost an entire additional penalty loop (roughly 2 penalty loops in pursuits/mass starts) compared to last winter (-6.9% hit rate). Sturla Holm Lægreid was the overall 2nd best shooter, thanks to outstanding hit rate (92.6%) and great range times (46.8s). Interestingly, Lægreid’s range time is faster than Eder’s, even though Eder’s shooting time is 0.6s better; apparently Lægreid’s shooting preparation is close to one second quicker.

Changes in Shooting Efficiency | 2019–20 vs. 2020–21

NoFamily NameGiven NameNationRacesHit RateRange TimePenalty LoopTime Loss
Sprint
Change
NoFamily NameGiven NameNationRacesHit RateRange TimePenalty LoopTime Loss
Sprint
Change
1HoferLukasITA
2684.2948.820.22:09.3-20.2
2SimaMichalSVK
1684.0950.422.92:17.1-17.9
3PonsiluomaMartinSWE
2679.5247.521.62:19.3-16.1
4SamuelssonSebastianSWE
2687.1449.521.22:06.2-14.3
5EderSimonAUT
2693.3347.022.31:48.9-12.1
6GowChristianCAN
2187.5048.422.02:04.3-12.0
7WegerBenjaminSUI
2486.8450.222.32:09.7-10.9
8LesserErikGER
2386.9448.122.02:04.8-9.9
9NordgrenLeifUSA
1785.4250.323.12:14.2-9.5
10GowScottCAN
1982.8646.823.02:12.9-9.4
11EliseevMatveyRUS
2589.0046.722.11:57.7-9.4
12LatypovEduardRUS
2582.7550.621.82:18.9-9.3
13RastorgujevsAndrejsLAT
1980.3350.521.42:23.2-5.9
14DovzanMihaSLO
2088.0046.022.91:59.5-5.6
15VarabeiMaksimBLR
2078.3354.822.42:38.3-4.9
16HarjulaTuomasFIN
1786.9650.422.22:09.7-3.9
17KrcmarMichalCZE
2086.5650.321.72:09.7-3.9
18FemlingPeppeSWE
2182.8147.822.82:14.9-3.5
19LeitnerFelixAUT
2385.0053.122.22:19.5-2.6
20LangerThierryBEL
1881.1553.922.82:30.6-2.0
21FakJakovSLO
2690.7147.921.71:55.9-1.8
22SeppalaTeroFIN
2179.6951.121.62:26.2-1.0
23IlievVladimirBUL
1775.6051.022.02:35.5-0.8
24WindischDominikITA
1976.5550.121.12:29.6-0.6
25ClaudeFabienFRA
2579.0048.421.32:21.5-0.0
26BocharnikovSergeyBLR
2282.9450.824.32:23.0+0.1
27KomatzDavidAUT
2290.5953.921.72:08.2+0.7
28ClaudeFlorentBEL
1985.3654.022.22:20.5+0.8
29DohertySeanUSA
1982.1449.322.22:18.3+1.1
30DollBenediktGER
2681.4348.321.92:17.1+1.4
31Fillon MailletQuentinFRA
2587.2546.622.92:02.5+1.7
32JacquelinEmilienFRA
2687.3846.921.12:00.4+2.2
33BoeTarjeiNOR
2685.7149.920.32:08.8+2.3
34StroliaVytautasLTU
1678.1853.122.72:35.6+2.8
35PeifferArndGER
2187.9448.721.42:03.1+3.1
36BormoliniThomasITA
1884.0749.722.12:14.5+3.2
37PrymaArtemUKR
1982.8648.223.12:16.0+3.5
38DesthieuxSimonFRA
2685.2447.821.42:07.1+3.6
39DombrovskiKarolLTU
1786.2553.423.12:18.5+3.8
40ChristiansenVetle SjaastadNOR
2286.0050.421.12:10.4+4.4
41DaleJohannesNOR
2683.8152.021.62:18.9+4.7
42GaranichevEvgeniyRUS
1886.5549.823.42:11.2+4.8
43SmolskiAntonBLR
2280.5950.822.22:24.6+5.1
44LaegreidSturla HolmNOR
2692.6246.821.21:49.2+5.3
45GuigonnatAntoninFRA
2581.7549.121.92:18.2+6.6
46MoravecOndrejCZE
1886.0748.722.62:08.8+9.5
47PidruchnyiDmytroUKR
2280.5947.022.82:18.2+10.6
48TrsanRokSLO
1885.1947.823.32:10.2+11.5
49LoginovAlexanderRUS
2486.3249.022.42:08.6+12.0
50NelinJesperSWE
2374.0552.021.72:40.4+13.0
51BrownJakeUSA
1776.0055.030.53:03.1+14.0
52FinelloJeremySUI
1970.3650.422.22:46.6+14.2
53StvrteckyJakubCZE
1971.4356.221.72:54.5+15.1
54KuehnJohannesGER
1675.0053.921.22:40.7+15.2
55BoeJohannes T.NOR
2685.2448.821.12:08.7+18.2


Women

Janina Hettich was the most improved shooter on the women’s side. In her 9 races in 2019–20, she had only managed to hit 70.9% of her targets – she was 17.7% better this winter. Dzinara Alimbekava wasn’t just the most improved skier, she was also the 2nd-best in terms of shooting improvements (further highlighting her incredible breakout year). Karoline Offigstad Knotten and Dorothea Wierer were the overall most efficient female shooters; they did however lose roughly 20s more on the range compared to Eder/Lægreid (maybe 4-5s of that is down to skiing, the rest is due to slower and less accurate shooting).

Overall World Cup winner, Tiril Eckhoff, improved her shooting somewhat, thanks to a slightly higher hit rate (+1.4%) and a lower shooting time (-1.8s). In general, Eckhoff’s performance stats, in terms of neither skiing nor shooting, improved dramatically; however, her Overall Performance Score nudged 0.1 higher (even with two horrendous races at the season opener). Hanna Öberg‘s shooting closely followed her skiing form: she was the top shooter in trimester 1 (90.0% hit rate), but it completely fell apart by the end of the season (trimester 3 hit rate: 70.9%).

Changes in Shooting Efficiency | 2019–20 vs. 2020–21

NoFamily NameGiven NameNationRacesHit RateRange TimePenalty LoopTime Loss
Sprint
Change
NoFamily NameGiven NameNationRacesHit RateRange TimePenalty LoopTime Loss
Sprint
Change
1HettichJaninaGER
2488.6154.525.22:17.8-38.9
2AlimbekavaDzinaraBLR
2683.8153.025.12:26.7-28.1
3HaeckiLenaSUI
2179.6947.425.42:26.5-20.1
4MinkkinenSuviFIN
1883.8551.225.92:24.2-15.4
5ZdoucDunjaAUT
2588.7553.524.22:14.2-15.2
6ZukKamilaPOL
1777.2057.225.02:51.5-14.2
7MironovaSvetlanaRUS
2277.9451.223.92:35.1-13.7
8OebergElviraSWE
2582.2550.924.72:25.7-13.5
9HammerschmidtMarenGER
1786.9249.525.92:12.9-13.4
10KnottenKaroline O.NOR
2389.1750.325.72:08.4-13.3
11DavidovaMarketaCZE
2582.7554.023.82:29.1-11.8
12DunkleeSusanUSA
1979.6453.426.32:40.2-9.7
13HinzVanessaGER
2287.0653.324.92:18.8-8.0
14TachizakiFuyukoJPN
1882.3156.725.62:38.8-7.9
15KruchinkinaElenaBLR
2377.2258.825.22:55.0-7.1
16EderMariFIN
1777.0858.824.82:54.3-6.7
17EckhoffTirilNOR
2684.5251.023.02:17.6-6.5
18HerrmannDeniseGER
2581.5052.624.12:29.7-6.3
19SchwaigerJuliaAUT
1984.6454.625.22:27.9-6.1
20LunderEmmaCAN
2285.8849.824.92:14.7-5.0
21Braisaz-BouchetJustineFRA
2676.6753.623.32:41.7-4.1
22CadurischIreneSUI
1679.5748.324.82:27.3-3.9
23GasparinSelinaSUI
1977.5054.623.62:42.2-3.8
24WiererDorotheaITA
2686.9049.023.92:09.3-3.7
25PidhrushnaOlenaUKR
1882.9653.126.02:30.3-3.0
26BrorssonMonaSWE
2284.4153.724.92:26.4-2.0
27DzhimaYuliiaUKR
2186.5652.024.82:17.4-1.9
28Hojnisz-StaregaMonikaPOL
1687.2052.924.62:17.3-1.7
29KuklinaLarisaRUS
1684.0049.424.92:18.7-0.7
30GasparinElisaSUI
2180.9452.024.92:31.4+0.2
31SolaHannaBLR
2370.2749.924.22:51.7+0.2
32PuskarcikovaEvaCZE
1882.6950.426.22:26.1+0.8
33TalihaermJohannaEST
1880.7756.926.12:43.9+1.3
34PerssonLinnSWE
2683.8153.123.92:24.9+2.1
35RoeiselandMarte OlsbuNOR
2685.0050.524.22:17.3+2.1
36TandrevoldIngrid L.NOR
2583.0854.824.12:30.4+2.5
37HauserLisa TheresaAUT
2685.0050.923.02:16.4+4.9
38BescondAnaisFRA
2683.1056.624.22:34.0+5.1
39MaedaSariJPN
1671.8256.625.73:05.8+6.3
40OebergHannaSWE
2684.5248.224.22:13.8+6.7
41GasparinAitaSUI
1983.5751.025.92:24.6+7.3
42VittozziLisaITA
2578.0051.524.42:36.8+8.4
43JislovaJessicaCZE
1777.0856.325.32:50.5+8.8
44EganClareUSA
2381.6757.724.32:40.0+8.9
45PreussFranziskaGER
2686.4350.523.42:12.7+9.7
46SimonJuliaFRA
2675.5048.024.52:36.0+11.0
47BendikaBaibaLAT
1676.6750.524.82:39.0+11.1
48TodorovaMilenaBUL
1976.9056.424.82:50.0+12.2
49CharvatovaLucieCZE
1765.9151.623.13:02.1+12.4
50LieLotteBEL
1890.0055.226.22:16.7+13.5
51BlashkoDaryaUKR
2087.7452.725.02:16.1+14.3
52ChevalierChloeFRA
1878.1557.724.32:48.4+16.3
53InnerhoferKatharinaAUT
1766.6754.424.13:09.2+22.9

Posted in Statistical analysis | Tagged shooting

Overall performance scores, season-to-season improvements

Posted on 2021-01-19 | by real biathlon | Leave a Comment on Overall performance scores, season-to-season improvements

Last weekend’s mass starts marked the halfway point of the season (13 of 26 races are done). This is probably a good time to take another look at the overall performances this winter. Below, I listed the season-to-season changes in the Overall Performance Score of regular World Cup athletes (at least 8 races in the last two seasons), plus the current top 15 per gender (full results for the entire field here: men & women). You can do your own season-to-season comparisons for all stats in the Patreon bonus area.


Note: The scores are standard scores (or z-scores), indicating how many standard deviations (SD) an athlete is back from the World Cup mean (negative values indicate performances better than the mean). The Total Performance Score is calculated by approximating the importance of skiing, hit rate and shooting pace using the method of least squares (for more details, see here and here), and then weighting each z-score value accordingly.


Men

It’s always interesting to me how accurately this very theoretical method reflects the current World Cup standings. For the men, the top 2, Johannes Thingnes Bø and Sturla Holm Lægreid, are predicted correctly – only through skiing and shooting stats, without taking a single race result into account. I think that’s pretty good. Twelve of the top 15 come within two positions of their current World Cup rank.

Quentin Fillon Maillet is overestimated, in large parts because he forgot to do a penalty loop in the Oberhof sprint (which essentially ruined two races for him). It’s no surprise that something like that isn’t reflected here. Arnd Peiffer is ranked four positions higher than his current World Cup rank, however, he missed two races in Hochfilzen last month and his average race position (14.7) would rank him 9th overall, therefore this ranking is not a bad estimation of his form this season.

Top 15 Overall performance score (z-Scores) | Non-Team events 2020–21 season

NoFamily NameGiven NameNationRacesWorld Cup
Rank
Ski Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
NoFamily NameGiven NameNationRacesWorld Cup
Rank
Ski Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
1BoeJohannes ThingnesNOR
131-2.09-0.65-0.67-1.50
2LaegreidSturla HolmNOR
132-1.45-1.49-0.77-1.38
3Fillon MailletQuentinFRA
127-1.49-1.04-1.14-1.32
4BoeTarjeiNOR
133-1.74-0.85-0.22-1.30
5JacquelinEmilienFRA
136-1.44-1.00-1.26-1.29
6DaleJohannesNOR
134-1.83-0.800.27-1.28
7SamuelssonSebastianSWE
135-1.51-1.05-0.30-1.23
8PonsiluomaMartinSWE
138-1.73-0.11-1.14-1.19
9PeifferArndGER
1113-1.33-1.10-0.53-1.16
10LesserErikGER
1311-1.18-1.00-1.29-1.14
11FakJakovSLO
139-1.09-1.29-0.87-1.12
12HoferLukasITA
1310-1.47-0.46-0.78-1.10
13DollBenediktGER
1312-1.28-0.75-0.97-1.09
14ChristiansenVetle SjaastadNOR
1215-1.32-0.93-0.27-1.08
15LoginovAlexanderRUS
1219-1.31-0.71-0.64-1.06

Looking at changes season-to-season, the Swedish duo Martin Ponsiluoma and Sebastian Samuelsson are the most improved biathletes, mainly due to their new found ski speed. Lukas Hofer comes third; he had a very impressive two weeks in Oberhof (top 6 results in all four non-team races). Benjamin Weger made his first podium in almost eight years last Sunday (his current non-team percentage is at an all-time high, 88.5%); he is the fourth most improved athlete right now.

2020–21 z-Scores compared to 2019–20 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1PonsiluomaMartinSWE
13-1.73-0.11-1.14-1.19-0.69
2SamuelssonSebastianSWE
13-1.51-1.05-0.30-1.23-0.56
3HoferLukasITA
13-1.47-0.46-0.78-1.10-0.44
4WegerBenjaminSUI
13-1.06-0.95-0.54-0.96-0.34
5BocharnikovSergeyBLR
12-1.00-0.39-0.37-0.75-0.33
6SimaMichalSVK
90.24-0.77-0.38-0.13-0.31
7EliseevMatveyRUS
13-0.82-1.15-1.10-0.95-0.28
8GowChristianCAN
11-0.36-1.16-0.68-0.63-0.27
9LatypovEduardRUS
13-1.14-0.360.08-0.77-0.26
10HasillaTomasSVK
80.190.38-0.030.22-0.26
11FakJakovSLO
13-1.09-1.29-0.87-1.12-0.25
12SmolskiAntonBLR
11-1.17-0.24-0.11-0.77-0.21
13DaleJohannesNOR
13-1.83-0.800.27-1.28-0.21
14EderSimonAUT
13-0.50-1.64-1.33-0.93-0.15
15JacquelinEmilienFRA
13-1.44-1.00-1.26-1.29-0.14
16KrcmarMichalCZE
9-0.83-1.100.03-0.80-0.11
17LangerThierryBEL
9-0.22-0.360.47-0.17-0.11
18PeifferArndGER
11-1.33-1.10-0.53-1.16-0.11
19BormoliniThomasITA
8-0.72-0.74-0.41-0.69-0.10
20ChristiansenVetle SjaastadNOR
12-1.32-0.93-0.27-1.08-0.10
21NordgrenLeifUSA
9-0.31-0.52-0.21-0.36-0.10
22ClaudeFabienFRA
13-1.37-0.01-0.85-0.92-0.10
23NelinJesperSWE
11-1.400.240.01-0.75-0.10
24BoeTarjeiNOR
13-1.74-0.85-0.22-1.30-0.08
25DombrovskiKarolLTU
10-0.14-0.820.48-0.26-0.08
26DollBenediktGER
13-1.28-0.75-0.97-1.09-0.06
27DovzanMihaSLO
90.40-0.69-1.24-0.11-0.06
28WindischDominikITA
9-0.94-0.04-0.29-0.60-0.05
29RastorgujevsAndrejsLAT
12-1.14-0.06-0.30-0.73-0.04
30GuigonnatAntoninFRA
13-0.90-0.80-0.43-0.82-0.02
31LeitnerFelixAUT
11-0.93-0.730.73-0.68+0.00
32SeppalaTeroFIN
11-1.000.07-0.02-0.57+0.03
33Fillon MailletQuentinFRA
12-1.49-1.04-1.14-1.32+0.04
34DohertySeanUSA
11-0.34-0.36-0.60-0.38+0.08
35YaliotnauRamanBLR
10-0.920.59-0.03-0.37+0.08
36LoginovAlexanderRUS
12-1.31-0.71-0.64-1.06+0.10
37PrymaArtemUKR
11-0.73-0.24-0.87-0.60+0.10
38ErmitsKalevEST
90.020.27-0.110.07+0.11
39BoeJohannes ThingnesNOR
13-2.09-0.65-0.67-1.50+0.11
40StroliaVytautasLTU
10-0.42-0.110.16-0.26+0.11
41FemlingPeppeSWE
12-0.19-0.39-1.04-0.35+0.14
42IlievVladimirBUL
8-0.880.25-0.07-0.45+0.14
43DesthieuxSimonFRA
13-1.20-0.51-0.80-0.95+0.15
44EberhardJulianAUT
8-1.130.05-0.30-0.69+0.17
45MoravecOndrejCZE
10-0.34-0.77-0.75-0.51+0.20
46PidruchnyiDmytroUKR
11-0.69-0.17-1.19-0.60+0.20
47StvrteckyJakubCZE
10-0.981.081.28-0.11+0.21
48GaranichevEvgeniyRUS
8-0.42-0.93-0.46-0.58+0.22
49KuehnJohannesGER
9-1.23-0.040.57-0.67+0.24
50ClaudeFlorentBEL
9-0.48-0.110.92-0.21+0.25
51TrsanRokSLO
80.63-0.74-0.920.05+0.34
52GowScottCAN
90.14-0.11-1.12-0.08+0.38
53GuzikGrzegorzPOL
10-0.060.73-0.460.12+0.38


Women

World Cup leader Marte Olsbu Røiseland tops the women’s ranking, even though Tiril Eckhoff has won 6 out of 13 races so far. It’s a bit surprising that Eckhoff is only ranked third. Her overall season statistics are still affected by her very poor season opener in Kontiolahti, where she failed to make the World Cup points in both races.

Eckhoff’s ranking could be an argument that the best and worst one/two/three data points should be thrown out to better reflect an athlete’s expected standard performance. Presumably, the ranking would then no longer correlate as closely to the current World Cup standings though. Overall, 13 of the top 15 come within two positions of their current World Cup rank; no one in the top 8 is off by more than one position.

Top 15 Overall performance score (z-Scores) | Non-Team events 2020–21 season

NoFamily NameGiven NameNationRacesWorld Cup
Rank
Ski Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
NoFamily NameGiven NameNationRacesWorld Cup
Rank
Ski Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
1RoeiselandMarte OlsbuNOR
131-1.51-0.88-1.18-1.29
2OebergHannaSWE
133-1.20-0.97-1.82-1.21
3EckhoffTirilNOR
132-1.51-0.64-0.53-1.14
4WiererDorotheaITA
134-0.94-1.26-1.56-1.10
5OebergElviraSWE
136-1.32-0.64-0.80-1.06
6PreussFranziskaGER
135-1.17-0.73-1.24-1.05
7HauserLisa TheresaAUT
138-1.15-0.73-1.03-1.02
8AlimbekavaDzinaraBLR
137-1.12-1.02-0.42-1.01
9SimonJuliaFRA
1312-1.19-0.12-1.75-0.94
10Braisaz-BouchetJustineFRA
1314-1.39-0.31-0.14-0.93
11DavidovaMarketaCZE
139-1.38-0.35-0.07-0.93
12HerrmannDeniseGER
1311-1.38-0.16-0.52-0.93
13TandrevoldIngrid LandmarkNOR
1213-1.29-0.51-0.05-0.91
14PerssonLinnSWE
1315-0.98-0.78-0.25-0.84
15KnottenKarolineNOR
1316-0.47-1.31-1.30-0.81

Just like on the men’s side, the most improved skier, Dzinara Alimbekava, is also the most improved biathlete overall, confirming again that ski speed is by far the most important aspect of the sport – maybe not in a single race, but certainly if you look at results over longer periods. Elvira Öberg and Tuuli Tomingas come second and third. Monika Hojnisz-Staręga suffered one of the biggest declines season-to-season, however, after an extremely poor December, she was much improved in Oberhof.

2020–21 z-Scores compared to 2019–20 | Non-Team events

NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
NoFamily NameGiven NameNationRacesSki Speed
Score
Hit Rate
Score
Range Time
Score
Total
Performance
Score
Change
1AlimbekavaDzinaraBLR
13-1.12-1.02-0.42-1.01-0.93
2OebergElviraSWE
13-1.32-0.64-0.80-1.06-0.54
3TomingasTuuliEST
10-0.66-0.390.16-0.48-0.54
4ZdoucDunjaAUT
13-0.33-1.07-0.30-0.54-0.38
5HettichJaninaGER
13-0.50-1.26-0.06-0.67-0.31
6ReidJoanneUSA
9-0.46-0.510.77-0.33-0.30
7KnottenKarolineNOR
13-0.47-1.31-1.30-0.81-0.28
8ColomboCarolineFRA
11-0.76-0.29-0.49-0.59-0.26
9HauserLisa TheresaAUT
13-1.15-0.73-1.03-1.02-0.23
10MinkkinenSuviFIN
90.03-0.59-0.92-0.27-0.20
11MironovaSvetlanaRUS
10-1.06-0.18-0.81-0.78-0.19
12BlashkoDaryaUKR
10-0.31-1.320.17-0.55-0.16
13KlemencicPolonaSLO
80.070.36-0.060.14-0.14
14SolaHannaBLR
11-1.130.95-0.97-0.51-0.14
15DavidovaMarketaCZE
13-1.38-0.35-0.07-0.93-0.14
16LunderEmmaCAN
13-0.52-1.02-1.15-0.74-0.13
17Braisaz-BouchetJustineFRA
13-1.39-0.31-0.14-0.93-0.08
18OebergHannaSWE
13-1.20-0.97-1.82-1.21-0.07
19RoeiselandMarte OlsbuNOR
13-1.51-0.88-1.18-1.29-0.05
20SchwaigerJuliaAUT
10-0.60-0.59-0.01-0.53-0.05
21SimonJuliaFRA
13-1.19-0.12-1.75-0.94-0.05
22MaedaSariJPN
9-0.490.600.21-0.09-0.05
23TodorovaMilenaBUL
10-0.610.010.20-0.33-0.03
24BrorssonMonaSWE
11-0.72-0.77-0.62-0.72-0.03
25PerssonLinnSWE
13-0.98-0.78-0.25-0.84-0.03
26TandrevoldIngrid LandmarkNOR
12-1.29-0.51-0.05-0.91-0.01
27HaeckiLenaSUI
11-0.70-0.17-1.61-0.66-0.01
28KryukoIrynaBLR
8-0.79-0.860.97-0.60+0.00
29WiererDorotheaITA
13-0.94-1.26-1.56-1.10+0.01
30GasparinElisaSUI
10-0.55-0.12-0.84-0.46+0.02
31PreussFranziskaGER
13-1.17-0.73-1.24-1.05+0.02
32EckhoffTirilNOR
13-1.51-0.64-0.53-1.14+0.03
33TachizakiFuyukoJPN
10-0.32-0.520.64-0.27+0.05
34KruchinkinaElenaBLR
13-0.91-0.210.87-0.49+0.06
35ChevalierChloeFRA
11-0.930.000.75-0.46+0.07
36JislovaJessicaCZE
9-0.400.040.27-0.19+0.08
37FrolinaAnnaKOR
9-0.160.44-0.36-0.01+0.10
38GasparinAitaSUI
10-0.38-0.59-0.85-0.50+0.10
39ZukKamilaPOL
10-0.810.021.11-0.34+0.10
40SkottheimJohannaSWE
11-0.41-0.96-0.96-0.64+0.10
41BescondAnaisFRA
13-1.03-0.400.19-0.70+0.11
42GasparinSelinaSUI
9-1.100.200.18-0.57+0.11
43EderMariFIN
9-1.170.281.25-0.46+0.11
44BelchenkoYelizavetaKAZ
80.41-0.59-0.120.05+0.12
45HinzVanessaGER
10-0.58-0.86-0.33-0.63+0.12
46CharvatovaLucieCZE
9-1.031.50-0.93-0.28+0.13
47EganClareUSA
13-0.73-0.500.66-0.50+0.14
48HerrmannDeniseGER
13-1.38-0.16-0.52-0.93+0.15
49TalihaermJohannaEST
9-0.25-0.190.93-0.09+0.15
50DzhimaYuliiaUKR
10-0.74-0.66-0.20-0.65+0.17
51PidhrushnaOlenaUKR
8-0.58-0.37-0.20-0.48+0.20
52PuskarcikovaEvaCZE
10-0.11-0.46-1.25-0.35+0.20
53VittozziLisaITA
12-0.74-0.06-0.64-0.53+0.23
54DunkleeSusanUSA
10-0.470.29-0.14-0.21+0.23
55Hojnisz-StaregaMonikaPOL
8-0.61-0.91-0.29-0.66+0.30
56InnerhoferKatharinaAUT
10-0.991.31-0.00-0.20+0.40
57ZbylutKingaPOL
10-0.070.360.000.07+0.42

Posted in Statistical analysis | Tagged 2020–21 season, overall performance, shooting, skiing

Posts navigation

Older posts

Recent Articles

  • Most improved athletes this winter
  • New biathlon point system
  • Historic biathlon results create expectations. But what about points?
  • What do you expect? Practical applications of the W.E.I.S.E.
  • Introducing W. E. I. S. E: the Win Expectancy Index based on Statistical Exploration, version 1

Categories

  • Biathlon Media
  • Biathlon News
  • Long-term trends
  • Statistical analysis
  • Website updates

Archives by Month

  • 2022: J F M A M J J A S O N D
  • 2021: J F M A M J J A S O N D
  • 2020: J F M A M J J A S O N D
  • 2015: J F M A M J J A S O N D
  • 2013: J F M A M J J A S O N D
  • 2012: J F M A M J J A S O N D

Search Articles